Fundamentals of Accelerators Lecture - Day 5

William A. Barletta
Director, US Particle Accelerator School
Dept. of Physics, MIT
Economics Faculty, University of Ljubljana

|||| Thermal characteristics of beams

* Beams particles have random (thermal) \perp motion

* Beams must be confined against thermal expansion during transport

|liī
 Brightness of a beam source

* A figure of merit for the performance of a beam source is the brightness

$$
\begin{gathered}
\mathcal{B}=\frac{\text { Beam current }}{\text { Beam area } \circ \text { Beam Divergence }}=\frac{\text { Emissivity }(\mathrm{J})}{\sqrt{\text { Temperature/mass }}} \\
=\frac{J_{e}}{\left(\sqrt{\frac{k T}{\gamma m_{o} c^{2}}}\right)^{2}}=\frac{J_{e} \gamma}{\left(k T / m_{o} c^{2}\right)}
\end{gathered}
$$

Typically the normalized brightness is quoted for $\gamma=1$

||| Bunch dimensions

For uniform charge distributions
We may use "hard edge values
For gaussian charge distributions Use rms values $\sigma_{x}, \sigma_{y}, \sigma_{z}$

We will discuss measurements of bunch size and charge distribution later

||| But rms values can be misleading

Gaussian beam

Beam with halo

We need to measure the particle distribution

IIIII

What is this thing called beam quality? or
 How can one describe the dynamics of a bunch of particles?

||| Coordinate space

Each of N_{b} particles is tracked in ordinary 3-D space

Not too helpful

\|\| Configuration space:

$6 \mathrm{~N}_{\mathrm{b}}$-dimensional space for N_{b} particles; coordinates $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}\right), \mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{b}}$ The bunch is represented by a single point that moves in time

Useful for Hamiltonian dynamics

|| ${ }^{-1 / E}$ Configuration space example: One particle in an harmonic potential

But for many problems this description carries much more information than needed :

We don't care about each of 10^{10} individual particles
But seeing both the $x \& p_{x}$ looks useful

||Fe Option 3: Phase space (gas space in statistical mechanics)

6-dimensional space for N_{b} particles
The $i^{\text {th }}$ particle has coordinates $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}\right), \mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z}$
The bunch is represented by N_{b} points that move in time

In most cases, the three planes are to very good approximation decoupled $==>$ One can study the particle evolution independently in each planes:

|||| Particles Systems \& Ensembles

* The set of possible states for a system of N particles is referred as an ensemble in statistical mechanics.
* In the statistical approach, particles lose their individuality.
* Properties of the whole system are fully represented by particle density functions $f_{6 D}$ and $f_{2 D}$:

$$
f_{6 D}\left(x, p_{x}, y, p_{y}, z, p_{z}\right) d x d p_{x} d y d p_{y} d z d p_{z} \quad f_{2 D}\left(x_{i}, p_{i}\right) d x_{i} d p_{i} \quad i=1,2,3
$$

where

$$
\int f_{6 D} d x d p_{x} d y d p_{y} d z d p_{z}=N
$$

||||i| Longitudinal phase space

* In most accelerators the phase space planes are only weakly coupled.
$>$ Treat the longitudinal plane independently from the transverse one
$>$ Effects of weak coupling can be treated as a perturbation of the uncoupled solution
* In the longitudinal plane, electric fields accelerate the particles
$>$ Use energy as longitudinal variable together with its canonical conjugate time
* Frequently, we use relative energy variation $\delta \&$ relative time τ with respect to a reference particle

$$
\delta=\frac{E-E_{0}}{E_{0}} \quad \tau=t-t_{0}
$$

* According to Liouville, in the presence of Hamiltonian forces, the area occupied by the beam in the longitudinal phase space is conserved

\|\| Transverse phase space

* For transverse planes $\left\{x, p_{x}\right\}$ and $\left\{y, p_{y}\right\}$, use a modified phase space where the momentum components are replaced by:
$\underset{\text { where s is the direction }}{p_{x i} \rightarrow x^{\prime}=\frac{d x}{d s} \text { motion }} \quad p_{y i} \rightarrow y^{\prime}=\frac{d y}{d s}$
* We can relate the old and new variables (for $\mathrm{Bz} \neq 0$) by

$$
p_{i}=\gamma m_{0} \frac{d x_{i}}{d t}=\gamma m_{0} v_{s} \frac{d x_{i}}{d s}=\gamma \beta m_{0} c x_{i}^{\prime} \quad \mathrm{i}=\mathrm{x}, \mathrm{y}
$$

 there is no a \mathcal{E} celeration (γ and β constant)

|||F Consider an ensemble of harmonic oscillators in phase space

Particles stay on their energy contour.
Again the phase area of the ensemble is conserved

\| ${ }^{-1}$ Emittance describes area in phase space of the ensemble of beam particles

Emittance - Phase space volume of beam

$$
\varepsilon^{2} \equiv R^{2}\left(V^{2}-\left(R^{\prime}\right)^{2}\right) / c^{2}
$$

IIIIT

Notice: The phase space area is conserved

$$
\binom{x}{x^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}} \Longrightarrow \begin{gathered}
x=x_{0}+L x_{0}^{\prime} \\
x^{\prime}=x_{0}^{\prime}
\end{gathered}
$$

\| 1 - A numerical example: Free expansion of a due due to emittance

$$
R^{2}=R_{o}^{2}+V_{o}^{2} L^{2}=R_{o}^{2}+\frac{\varepsilon^{2}}{R_{o}^{2}} L^{2}
$$

This emittance is the phase space area occupied by the system of particles, divided by $\boldsymbol{\pi}$

The rms emittance is a measure of the mean non-directed (thermal) energy of the beam

Why is emittance an important concept

1) Liouville: Under conservative forces phase space evolves like an incompressible fluid $==>$
2) Under linear forces macroscopic (such as focusing magnets) \&
$\gamma=$ constant
emittance is an invariant of motion
X
3) Under acceleration

$$
\gamma \varepsilon=\varepsilon_{\mathrm{n}}
$$

is an adiabatic invariant

||||| Emittance conservation with \boldsymbol{B}_{z}

* An axial B_{z} field, (e.g.,solenoidal lenses) couples transverse planes
$>$ The 2-D Phase space area occupied by the system in each transverse plane is no longer conserved

* Liouville's theorem still applies to the 4D transverse phase space
$>$ the 4-D hypervolume is an invariant of the motion
* In a frame rotating around the z axis by the Larmor frequency $\omega_{L}=q B_{z} / 2 g m_{0}$, the transverse planes decouple
$>$ The phase space area in each of the planes is conserved again

||||| Emittance during acceleration

* When the beam is accelerated, β \& γ change
$>x$ and x, are no longer canonical
$>$ Liouville theorem does not apply \& emittance is not invariant

$$
\begin{aligned}
p_{z} & =\sqrt{\frac{T^{2}+2 T m_{0} c^{2}}{T_{0}^{2}+2 T_{0} m_{0} c^{2}}} p_{z 0} \\
T & \equiv \text { kinetic energy }
\end{aligned}
$$

Illiī Then...

$y_{0}^{\prime}=\tan \theta_{0}=\frac{p_{y 0}}{p_{z 0}}=\frac{p_{y 0}}{\beta_{0} \gamma_{0} m_{0} c} \quad y^{\prime}=\tan \theta=\frac{p_{y}}{p_{z}}=\frac{p_{y 0}}{\beta \gamma m_{0} c} \quad \frac{y^{\prime}}{y_{0}^{\prime}}=\frac{\beta_{0} \gamma_{0}}{\beta \gamma}$

$$
\text { In this case } \frac{\varepsilon_{y}}{\varepsilon_{y 0}}=\frac{y^{\prime}}{y_{0}^{\prime}} \quad=>\beta \gamma \varepsilon_{y}=\beta_{0} \gamma_{0} \varepsilon_{y 0}
$$

* Therefore, the quantity $\beta \gamma \varepsilon$ is invariant during acceleration.
* Define a conserved normalized emittance

$$
\varepsilon_{n i}=\beta \gamma \varepsilon_{i} \quad i=x, y
$$

Acceleration couples the longitudinal plane with the transverse planes
The 6D emittance is still conserved but the transverse ones are not

INF Example 2: Filamentation of longitudinal phase space

Data from CERN PS
The emittance according to Liouville is still conserved
Macroscopic (rms) emittance is not conserved

IHE Non-conservative forces (scattering) increases emittance

\|\| The Concept of Acceptance

Example: Acceptance of a slit

Illii
 Measuring the emittance of the beam

$$
\varepsilon^{2}=R^{2}\left(V^{2}-\left(R^{\prime}\right)^{2}\right) / c^{2}
$$

* RMS emittance
$>$ Determine rms values of velocity \& spatial distribution
* Ideally determine distribution functions \& compute rms values
* Destructive and non-destructive diagnostics

|||| Example of pepperpot diagnostic

* Size of image $==>$ R
* Spread in overall image $==>$ R' $^{\prime}$
* Spread in beamlets $==>$ V
* Intensity of beamlets $==>$ current density

$\|$ Wire scanning to measure R and ε

* Measure x-ray signal from beam scattering from thin tungsten wires
* Requires at least 3 measurements along the beamline

[^0]
\||l Measured 33-mA Beam RMS Emittances

10.1 mm full scale

Horizontal, 0.22 pi mm mrad

Iliī
 Nonlinear space-charge fields filament phase space via Landau damping

Consider a cold beam with a Gaussian charge distribution entering a dense plasma

At the beam head the plasma shorts out the E_{r} leaving only the azimuthal B-field

The beam begins to pinch trying to find an equilibrium radius

Iliī

$z=7.9506+00$

Is there any way to decrease the emittance?

This means taking away mean transverse momentum, but
keeping mean longitudinal momentum

We'll leave the details for later in the course.

||| Schematic: radiation \& ionization cooling

Transverse cooling:

Passage through dipoles

Limited by quantum excitation

|||| Cartoon of transverse stochastic cooling

Van der Meer Nobel prize

Divide (sample) the beam into disks

1) rf pick-up sample centroid of disks
2) Kicker electrode imparts v_{\perp}
to center the disk

[^0]: SNS Wire Scanner

