
US Particle Accelerator School

Fundamentals of Accelerators
Lecture - Day 5

William A. Barletta
Director, US Particle Accelerator School

Dept. of Physics, MIT
Economics Faculty, University of Ljubljana



US Particle Accelerator School

 Beams particles have random (thermal) ⊥ motion

 Beams must be confined against thermal expansion during
transport

Thermal  characteristics of beams
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Brightness of a beam source

 A figure of merit for the performance of a beam source is
the brightness

Typically the normalized brightness is quoted for  γ = 1
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Bunch dimensions

X

Y

Z

For uniform charge distributions
We may use “hard edge values

For gaussian charge distributions 
        Use rms values σx, σy, σz

We will discuss measurements of 
bunch size and charge distribution later

σx,

σy

σz,
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But rms values can be misleading

σ σ

Gaussian beam Beam with halo

We  need to measure the particle distribution
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What is this thing called beam quality?
or

How can one describe the dynamics of
a bunch of particles?
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Coordinate space

Each of Nb particles is tracked in ordinary 3-D space

Not too helpful

Orbit  traces



US Particle Accelerator School

Configuration space:

6Nb-dimensional space for Nb particles; coordinates (xi, pi), i = 1,…, Nb

The bunch is represented by a single point that moves in time

Useful for Hamiltonian dynamics
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Configuration space example:
One particle in an harmonic potential

px

x

But for many problems this description carries
much more information than needed :

We don’t care about each of 1010 individual particles
But seeing both the x & px looks useful

ωb constant
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Option 3: Phase space
(gas space in statistical mechanics)

6-dimensional space for Nb particles
The ith particle has coordinates (xi, pi), i = x, y, z
The bunch is represented by Nb points that move in time

px

x

In most cases, the three planes are to very good approximation decoupled 
==> One can study the particle evolution independently in each planes:
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Particles Systems & Ensembles

 The set of possible states for a system of N particles is referred as an
ensemble in statistical mechanics.

 In the statistical approach, particles lose their individuality.

 Properties of the whole system are fully represented by particle density
functions  f6D  and f2D :

where

! 

f
6D x, px,y, py,z, pz( )  dx dpx dy dpy dz dpz

! 

f
2D xi, pi( )dxi dpi i =1,2,3

Ndpdzdpdydpdxf zyxD =! 6

From: Sannibale USPAS lectures
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Longitudinal phase space

 In most accelerators the phase space planes are only weakly coupled.
 Treat the longitudinal plane independently from the transverse one
 Effects of weak coupling can be treated as a perturbation of the

uncoupled solution

 In the longitudinal plane, electric fields accelerate the particles
 Use energy as longitudinal variable together with its canonical

conjugate time

 Frequently, we use relative energy variation δ & relative time τ  with
respect to a reference particle

 According to Liouville, in the presence of Hamiltonian forces, the area
occupied by the beam in the longitudinal phase space is conserved
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Transverse phase space

 For  transverse planes {x, px} and {y, py}, use a modified phase space where
the momentum components are replaced by:

where s is the direction of motion

 We can relate the old and new variables (for Bz ≠0 ) by

Note: xi and pi are canonical conjugate variables while x and xi’  are not, unless
there is no acceleration (γ and β constant)

From: Sannibale USPAS lectures
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Consider an ensemble of harmonic
oscillators in phase space

px

x

Particles stay on their energy contour.

Again the phase area of the ensemble is conserved
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Emittance describes area in phase space
of the ensemble of beam particles

Phase space of an
harmonic oscillator

Emittance - Phase space volume of beam 
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Force-free expansion of a beam

Notice: The phase space area is conserved
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A numerical example:
Free expansion of a due due to emittance
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The rms emittance is a measure
of the mean non-directed (thermal) energy

of the beam

This emittance is the phase space area 
occupied by the system of particles, divided by π
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Why is emittance an important concept

@ t1

@ t2
1) Liouville: Under conservative forces phase space

evolves like an incompressible fluid ==>

Z = λ/12

Z = λ/8
Z = λ/4

Z = 0
x

x’
2) Under linear forces macroscopic

(such as focusing magnets) &
γ =constant

emittance is an invariant of motion

3) Under acceleration
γε = εn 

is an adiabatic invariant
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 An axial Bz field, (e.g.,solenoidal lenses) couples transverse planes
 The 2-D Phase space area occupied by the system in each transverse plane is no

longer conserved

 Liouville’s theorem still applies to the 4D transverse phase space
 the 4-D hypervolume is an invariant of the motion

 In a frame rotating around the z axis by the Larmor frequency
ωL = qBz / 2g m0, the transverse planes decouple
 The phase space area in each of the planes is conserved again

Emittance conservation with Bz
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Emittance during acceleration

 When the beam is accelerated, β & γ change
 x and x’  are no longer canonical
 Liouville theorem does not apply & emittance is not invariant
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Then…

 Therefore, the quantity β γ ε  is invariant during acceleration.
 Define a conserved normalized emittance

Acceleration couples the longitudinal plane with the transverse planes
The 6D emittance is still conserved but the transverse ones are not
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Example 2: Filamentation of
longitudinal phase space

Data from CERN PS

The emittance according to Liouville is still conserved 

Macroscopic (rms) emittance is not conserved
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Non-conservative forces (scattering)
increases emittance

 Scatterer! 

 Scatterer! <Vx> <Vx + "Vx>
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The Concept of Acceptance

Example: Acceptance of a slit

y

y’

-h/2

h/d

-h/d

-h/2h

d

Electron
Trajectories

Matched beam
emittance

Acceptance at
the slit entrance

Unmatched beam
emittance

From: Sannibale USPAS lectures
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Measuring the emittance of the beam

 RMS emittance
 Determine rms values of velocity & spatial distribution

 Ideally determine distribution functions & compute rms
values

 Destructive and non-destructive diagnostics
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Example of pepperpot diagnostic

 Size of image ==> R
 Spread in overall image ==> R´
 Spread in beamlets ==> V
 Intensity of beamlets ==> current density
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Wire scanning to measure R and ε

SNS Wire Scanner

 Measure x-ray signal from beam
scattering from thin tungsten wires

 Requires at least 3 measurements along
the beamline
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Horizontal, 0.22 pi mm mrad       Vertical, 0.15 pi mm mrad
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Measured 33-mA Beam RMS Emittances
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Consider a cold beam with a
Gaussian charge distribution
entering a dense plasma

At the beam head the plasma shorts
out the Er leaving only the
azimuthal B-field

The beam begins to pinch trying to
find an equilibrium radius

Nonlinear space-charge fields
filament phase space via Landau damping
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Is there any way to decrease the emittance?

This means taking away mean transverse momentum,
but

keeping mean longitudinal momentum

We’ll leave the details for later in the course.
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Phase-Space Cooling in Any One Dimension
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Schematic: radiation & ionization cooling

Transverse cooling:

Passage 
through dipoles

Acceleration 
in RF cavity

P⊥ less
P|| less

P⊥ remains less
P|| restored

Limited by quantum excitation
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Cartoon of transverse stochastic cooling

Divide (sample) the beam into disks

1) rf pick-up sample centroid of disks

2) Kicker electrode imparts v⊥ 

to center the disk

Van der Meer Nobel prize 


