

Fundamentals of Accelerators Lecture - Day 5

William A. Barletta

Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana

Thermal characteristics of beams

♦ Beams particles have random (thermal) \perp motion

 Beams must be confined against thermal expansion during transport

Brightness of a beam source

A figure of merit for the performance of a beam source is the brightness University of Ljubljand

FACULTY OF

$$\mathcal{B} = \frac{\text{Beam current}}{\text{Beam area} \circ \text{Beam Divergence}} = \frac{\text{Emissivity (J)}}{\sqrt{\text{Temperature/mass}}}$$

$$=\frac{J_e}{\left(\sqrt{\frac{kT}{\gamma m_o c^2}}\right)^2}=\frac{J_e\gamma}{\left(\frac{kT}{m_o c^2}\right)}$$

Typically the normalized brightness is quoted for $\gamma = 1$

Bunch dimensions

For uniform charge distributions We may use "hard edge values

For gaussian charge distributions Use rms values σ_x , σ_y , σ_z

We will discuss measurements of bunch size and charge distribution later

We need to measure the particle distribution

Plif

What is this thing called beam quality? or How can one describe the dynamics of a bunch of particles?

Each of N_b particles is tracked in ordinary 3-D space

University of Ljubljana

FACULTY OF

Not too helpful

Configuration space:

 $6N_b$ -dimensional space for N_b particles; coordinates (x_i, p_i) , $i = 1, ..., N_b$ The bunch is represented by a single point that moves in time

Useful for Hamiltonian dynamics

Configuration space example: One particle in an harmonic potential

University *of Ljublja* FACULTY C

CONOMIC

Option 3: Phase space (gas space in statistical mechanics)

6-dimensional space for N_b particles The ith particle has coordinates (x_i, p_i) , i = x, y, zThe bunch is represented by N_b points that move in time

Jniversity of Ljubljan

CONOMIC

In most cases, the three planes are to very good approximation decoupled ==> One can study the particle evolution independently in each planes:

Particles Systems & Ensembles

The set of possible states for a system of N particles is referred as an *ensemble* in statistical mechanics.

University of Ljublja

CONOMIC

- ✤ In the statistical approach, particles lose their individuality.
- ✤ Properties of the whole system are fully represented by particle density functions f_{6D} and f_{2D} :

$$f_{6D}(x, p_x, y, p_y, z, p_z) dx dp_x dy dp_y dz dp_z \qquad f_{2D}(x_i, p_i) dx_i dp_i \quad i = 1, 2, 3$$

where

$$\int f_{6D} \, dx \, dp_x \, dy \, dp_y \, dz \, dp_z = N$$

Longitudinal phase space

- ✤ In most accelerators the phase space planes are only weakly coupled.
 - Treat the longitudinal plane independently from the transverse one
 - Effects of weak coupling can be treated as a perturbation of the uncoupled solution
- In the longitudinal plane, electric fields accelerate the particles
 - Use *energy* as longitudinal variable together with its canonical conjugate *time*
- * Frequently, we use *relative energy variation* δ & *relative time* τ with respect to a reference particle

$$\delta = \frac{E - E_0}{E_0} \qquad \tau = t - t_0$$

✤ According to Liouville, in the presence of Hamiltonian forces, the area occupied by the beam in the longitudinal phase space is conserved

Transverse phase space

- University of Ljubljana FACULTY OF ECONOMICS
- For transverse planes $\{x, p_x\}$ and $\{y, p_y\}$, use a modified phase space where the momentum components are replaced by:

$$p_{xi} \rightarrow x' = \frac{dx}{ds} \qquad p_{yi} \rightarrow y' = \frac{dy}{ds}$$

here s is the direction of motion

♦ We can relate the old and new variables (for $Bz \neq 0$) by

$$p_i = \gamma m_0 \frac{dx_i}{dt} = \gamma m_0 v_s \frac{dx_i}{ds} = \gamma \beta m_0 c x'_i \qquad i = x, y$$

Note: x_i and p_i are **cahemica** $\beta c \frac{v_s}{p_i^{v_s}}$ gate n d riables ($lhil \beta x^2$) and x_i ' are not, unless there is no acceleration (γ and β constant)

US PARTICLE ACCELERATOR SCHOOL

From: Sannibale USPAS lectures

wł

Consider an ensemble of harmonic oscillators in phase space

University of Ljubljanu FACULTY OF

Particles stay on their energy contour.

Again the phase area of the ensemble is conserved

Emittance describes area in phase space of the ensemble of beam particles

University of Ljubljana FACULTY OF ECONOMICS

Emittance - Phase space volume of beam

$$\varepsilon^2 \equiv R^2 (V^2 - (R')^2) / c^2$$

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix} \Longrightarrow \begin{array}{l} x = x_0 + L x'_0 \\ x' = x'_0 \end{array}$$

A numerical example: Free expansion of a due due to emittance

University of Ljubljana

FACULTY OF

$$R^{2} = R_{o}^{2} + V_{o}^{2}L^{2} = R_{o}^{2} + \frac{\varepsilon^{2}}{R_{o}^{2}}L^{2}$$

Pliī

This emittance is the phase space area occupied by the system of particles, divided by π

The rms emittance is a measure of the mean non-directed (thermal) energy of the beam

Why is emittance an important concept

 $Z = \lambda/8$

 $Z = \lambda/12$

 $\mathbf{Z} = \mathbf{0}$

x'

 $Z = \lambda/4$

1) Liouville: Under conservative forces phase space evolves like an incompressible fluid ==>

2) Under linear forces macroscopic (such as focusing magnets) & γ =constant
 emittance is an invariant of motion

3) Under acceleration $\gamma \varepsilon = \varepsilon_n$ is an adiabatic invariant

US PARTICLE ACCELERATOR SCHOOL

Χ

Emittance conservation with B_z

University of Ljubljana FACULTY OF ECONOMICS

- An axial B_z field, (e.g., solenoidal lenses) couples transverse planes
 - The 2-D Phase space area occupied by the system in each transverse plane is no longer conserved

- Liouville's theorem still applies to the 4D transverse phase space
 the 4-D hypervolume is an invariant of the motion
- In a frame rotating around the *z* axis by the *Larmor frequency* $\omega_L = qB_z/2g m_0$, the transverse planes decouple
 - > The phase space area in each of the planes is conserved again

Emittance during acceleration

- * When the beam is accelerated, $\beta \& \gamma$ change
 - $\succ x$ and x' are no longer canonical
 - Liouville theorem does not apply & emittance is not invariant

University of Ljubljan

CONOMIC

$$p_z = \sqrt{\frac{T + 2Tm_0c}{T_0^2 + 2T_0m_0c^2}} p_{z0}$$

 $T = kinetic \ energy$

US PARTICLE ACCELERATOR SCHOOL

From: Sannibale USPAS lectures

Then...

$$y'_{0} = \tan \theta_{0} = \frac{p_{y0}}{p_{z0}} = \frac{p_{y0}}{\beta_{0} \gamma_{0} m_{0} c} \qquad y' = \tan \theta = \frac{p_{y}}{p_{z}} = \frac{p_{y0}}{\beta \gamma m_{0} c} \qquad \frac{y'}{y'_{0}} = \frac{\beta_{0} \gamma_{0}}{\beta \gamma}$$

In this case $\frac{\varepsilon_{y}}{\varepsilon_{y0}} = \frac{y'}{y'_{0}} \qquad = > \qquad \beta \gamma \varepsilon_{y} = \beta_{0} \gamma_{0} \varepsilon_{y0}$

• Therefore, the quantity $\beta \gamma \epsilon$ is invariant during acceleration.

✤ Define a conserved *normalized emittance*

$$\varepsilon_{n\,i} = \beta \gamma \varepsilon_i \qquad i = x, y$$

Acceleration couples the longitudinal plane with the transverse planes The 6D emittance is still conserved but the transverse ones are not

From: Sannibale USPAS lectures

Example 2: Filamentation of longitudinal phase space

Data from CERN PS

The emittance according to Liouville is still conserved

Macroscopic (rms) emittance is not conserved

Non-conservative forces (scattering) increases emittance

University of Ljubljana FACULTY OF ECONOMICS

Measuring the emittance of the beam

$$\varepsilon^2 = R^2 (V^2 - (R')^2) / c^2$$

- RMS emittance
 - Determine rms values of velocity & spatial distribution
- Ideally determine distribution functions & compute rms values
- Destructive and non-destructive diagnostics

Example of pepperpot diagnostic

- Size of image \implies R
- ✤ Spread in overall image ==> R'
- Spread in beamlets => V
- Intensity of beamlets ==> current density

US PARTICLE ACCELERATOR SCHOOL

University of Ljubljand

FACULTY OF

Wire scanning to measure R and ε

- Measure x-ray signal from beam scattering from thin tungsten wires
- Requires at least 3 measurements along the beamline

Nonlinear space-charge fields filament phase space via Landau damping

Consider a cold beam with a Gaussian charge distribution entering a dense plasma

At the beam head the plasma shorts out the E_r leaving only the azimuthal B-field

The beam begins to pinch trying to find an equilibrium radius

Plif

Is there any way to decrease the emittance?

This means taking away mean transverse momentum, but keeping mean longitudinal momentum

We'll leave the details for later in the course.

Schematic: radiation & ionization cooling

Limited by quantum excitation

University of Ljubljana

FACULTY OF

Cartoon of transverse stochastic cooling

Van der Meer Nobel prize

Divide (sample) the beam into disks

- 1) rf pick-up sample centroid of disks
- 2) Kicker electrode imparts v_{\perp}

to center the disk